Calculating Net Force and Forces on Towing Vehicles

Understanding Net Force and Forces on Towing Vehicles

Your car and the trailer it is towing are initially at rest. You apply an acceleration of 1.75 m/s^2 to get the vehicles moving. The mass of your car is 1500 kg and the mass of the trailer is 140 kg. Let's determine the net force acting on the car, the force experienced by the trailer, and the force the trailer exerts on the car.

(a) Determine the net force (in N) acting on the car.

Using Newton's second law, we find that the net force on the car is 2625 N.

(b) How much force (in N) does the trailer experience?

The force the trailer experiences is 245 N.

(c) Determine the force (in N) the trailer exerts on the car.

The force the trailer exerts on the car is -245 N.

Final answer: Using Newton's second law, we find that the net force on the car is 2625 N, the force the trailer experiences is 245 N, and the force the trailer exerts on the car is -245 N.

Explanation: To compute these forces, we'll use the concept of Newton's second law (force equals mass times acceleration). Newton's second law is fundamental in understanding how forces interact.

A) Net force acting on the car

The net force on the car can be calculated by the formula: Force = Mass x Acceleration. Here, Force = 1500 kg x 1.75 m/s^2 = 2625 N. Therefore, the net force acting on the car is 2625 Newtons.

B) Force experienced by the trailer

For the trailer, Force = Mass x Acceleration. Hence, Force = 140 kg x 1.75 m/s^2 = 245 N. The force experienced by the trailer is therefore 245 Newtons.

C) Force the trailer exerts on the car

The force the trailer exerts on the car is equal but opposite to the force the car exerts on the trailer, which is -245 N. This signifies the principle of action and reaction according to Newton's third law.

What is the formula used to calculate net force on an object? The formula used to calculate net force on an object is Force = Mass x Acceleration.
← Avoid crashing into the building the angle of elevation challenge Motorcyclist jumping off a cliff physics problem →