Calculating Principal for Compound Interest

What is the principal that will grow to $3700 in seven years, five months at 8.8% compounded annually?

The principal that will grow to $3700 in seven years, five months at an annual interest rate of 8.8% compounded annually is approximately $2,334.06.

Understanding Compound Interest Calculation

To find the principal, we can use the formula for compound interest: A = P(1 + r/n)^(nt), where: - A is the future amount - P is the principal - r is the annual interest rate (as a decimal) - n is the number of times interest is compounded per year - t is the number of years In this case, the future amount (A) is given as $3700, the annual interest rate (r) is 8.8% or 0.088, and the time period (t) is 7 years and 5 months, which can be expressed as 7.4167 years. Substituting these values into the formula, we have: 3700 = P(1 + 0.088/1)^(1 * 7.4167) Simplifying the equation, we get: 3700 = P(1.088)^(7.4167) To solve for P, we divide both sides by (1.088)^(7.4167), resulting in: P = 3700 / (1.088)^(7.4167) Calculating this value, we find that P ≈ $2,334.06, rounded to the nearest cent. Therefore, the principal required to grow to $3700 in seven years, five months at an annual interest rate of 8.8% compounded annually is approximately $2,334.06.
← A decrease in the price of gps systems impacts and opportunities Linear programming problem cabinetmaker 2 cost reduction analysis →